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A method for the asymptotic stabilization of a natural mechanical system is proposed which does not require measurements of 
the velocities of the system, but requires the solution of linear differential equations during the control process. © 1999 Elsevier 
Science Ltd. All rights reserved. 

Various methods have been proposed to solve the problem of the asymptotic stabilization of a mechanical 
system by external control forces; most of them require measurements of velocities. Below we propose 
control laws that require measurements only of coordinates rather than velocities; in the process, use 
is made of observers (filters). It should be noted that coordinate detectors are less "noisy" than velocity 
detectors; in addition, observers are cheaper to install than velocity detectors. The main advantage of 
the stabilization schemes proposed here is their practical simplicity compared with previously proposed 
stabilization methods for the programmed motion of robot-manipulators and controlled satellites. 

Some results of this paper were presented in my candidate dissertation.$ 

1. T H E  E Q U A T I O N S  OF D Y N A M I C S  

The dynamics of a natural mechanical system are described by a Lagrange equation of the second 
kind 

(0K(q,/1 ) / 0ci) - 0K(q,/1 ) / 0q + g(q ) = M (1.1) 

which is equivalent to the equation 

A(q)ci + b(q,/1) + g(q) = M (1.2) 

where q e R ~ is a vector of generalized coordinates, A(q) is a positive-definite symmetric inertia matrix, 
K = 2 * A ( q ) 2 / 2  is the kinetic energy, g(q) is a vector of potential forces, b(q, 2) is a vector of terms 
quadratic in 2 and M is a vector of generalized control forces. 

Let q,(t) ~ C2[0, oo) be the programmed motion vector and let the functions il,(t), "(I,(t) be bounded 
on the s-emiaxis. We will assume that the matricesA(q) andA-l(q) ,  the vectors i~('q, 2"~,'g(q) and their 
first and second partial derivatives with respect to q and 2 are uniformly bounded in some neighbourhood 
of  the programmed motion. We will also assume that 12*A(q)q I > Cl [q 12, I q*A-l(q)21 > c-1 I q 12, 
V q e R n, c1, c-1 = const > 0 where the asterisk denotes transposition and I • I is the Euclidean vector 
norm• 

The programmed generalized force is defined by the formula 

Mp(t) = A(qp)~p + b(qp,~lt,) + g(qv) (1.3) 

The vector-valued function of time M (t) is a solution of the inverse problem of dynamics for the 
• P 

appropriate equations. This function may be computed m advance and stored, e.g. as a spline. 
We will introduce the deviation variables x = q - qm Y = 2 - qp. 

tPrikl. Mat. Mekh. Vol. 62, No. 6, pp. 923-933, 1998. 
:I:BURKOV, I. V., Stabilization algorithms for programmed motions of controlled mechanical systems with applications to 

robot technology. Candidate dissertation, St Petersburg State University, St Petersburg, 1993. 
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2 .  A S Y M P T O T I C  S T A B I L I Z A T I O N  O F  T H E  P R O G R A M M E D  P O S I T I O N  

Suppose the desired motion is a constant vector ~( t )  = const. Consider the regulator 

M = - K  1 (q - qp) - K 2 (q - ~) + g(q) 

and the auxiliary differential equation 

which is equivalent to the equation 

(2.1) 

q =/(3( q - ~) (2.2) 

~' = -K3w + ~1 (w = q - ~) (2.3) 

where K1 is a positive-definite symmetric matrix and K2 and K3 are diagonal matrices with positive 
diagonal elements. 

Theorem 2.1. The closed-loop system (1.1), (2.1), (2.2) (q - ~ ,  el, q - q )  is, as a whole, asymptotically 
stable• 

Proof. Without loss of generality, we may assume that % = 0 (otherwise, we introduce the change 
of variables x = q - q ) Introducing the generalized momentum p = A(q)cl, we can write the equations 

• . , P "  
of mouon m Hamdtoman form 

~H(p,q) /(2 w ¢1 = ~H(p,q)  p = KIq_  
~p ' ~q 

where H(p, q) is the kinetic energy of the system in terms of q and p• 
Consider the Lyapunov function 

V = H(p, q) + q*Klq/2 + w*K2w/2 

Its derivative along trajectories of system (1.1), (2.1), (2.2) is 

~H* . . . .  ~H* . , .  • 
V=- '~-q  q + q  Kjq+'-~-p p + w  t~2w= 

~H* ~P ,. ~H ~H* f ~H _K2wl+w,K2(_K3w+¢t ) .  = +q KI "~'p + ~ p  l-"~-q - KIq = 

= - / I*K2w-  w'K2 K3w + w'K2/1 = -w*K2K3w. 

Let us investigate the set S = {q, q, w: I1= 0}. Using the condition w = 0 and Eq. (2.3), we obtain 
/1 = 0. It follows from the second equation in the Hamiltonian system or the equations of dynamics 
and the regulator (1.1), (2.1), with the conditions w = 0 and/1 = 0, that q = 0. Thus, the set S consists 
of the single point (0, 0, 0) which, by the Barbashin-Krasovskii theorem, is asymptotically stable as a 
whole. 

In practice, the real-time computation of g(q) may involve difficulties. To overcome this obstacle, 
one can use the regulator 

M = - g  i (q - %,) - K 2 (q - ~) + g(qp) (2.4) 

Theorem 2.2. The closed-loop system (1 1), (2.2), (2.4) (q - ~ ,  ¢i, q - q )  is asymptotically stable, 
provided the matrixK1 + gq(qp) is positive definite and the matrices K2 and K3 are diagonal with positive 
diagonal elements. 

Proof. The closed-loop system is governed by the equation 

A(q)ii + b(q, el) = -KI (q - q p) - / (2  (q - q) - (g(q) - g(qt,)) 

and by Eq. (2.2). The linear approximation of this system is described by the following equations in the 
variables x, y, w 
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x = y ,  i=A-I(qt,)[-(Ki +gq(qp))x-K2w], ~ ' = - K 3 w + c  1 

The subscript q indicates partial differentiation. 
By Theorem 2.1, this system is asymptotically stable. Consequently, its eigenvalues lie in the open 

left half-plane, and so system (1.1), (2.2), (2.4) is asymptotically stable. 

3. S T A B I L I Z A T I O N  OF THE P R O G R A M M E D  PATH 

Consider the regulator 

M = Mp(t)- T(Ko x + xKlw) (w = DK4q - q) (3.1) 

where the vector ~ is an estimate for the vector t)Kaq. The control process entails solving the linear 
equation 

~. 

q = ~)K3 (DK4q - q) + DK4qp (3.2) 

where K,. are diagonal matrices with positive diagonal elements, and t), ~:, ~, > 0. 
Adding the vector - t)K4¢i to both sides of Eq. (3.2), we obtain 

~" = -DK3w + DK4Y (3.3) 

Theorem 3.1. The closed-loop system (1.1), (3.1), (3.2) is uniformly (with respect to time) asymptotically 
stable relative to the variables x, y, w for all sufficiently large ~¢, ~¢, o > 0. 

Proof. System (1.1), (3.1), (3.2) may be written in the form 

= y, Y =-~p +A-I(x+qt~)[-'~Kox-T~Klw+Mp-B(x+qp,Y+¢lp)] 
(3.4) 

~V =-~)K3w+DK4y (B(x+%, Y+¢lp) = b(x+qt,, Y+¢lp)+g(X+qp)) 

Expand the right-hand sides of the first two equations in Taylor series in powers of x, y. After reduction 
we obtain 

= y, ~" = (-A-I(qp)TKo + L(t))x- A-l(qp)T~Klw + N(t)y+... 

(L(t) = -A -I (qp)Bq(qp, I~lp) q- Aq I (qp)A(qp)iip, N(t) = -A -I (qp)B~t(qp, ¢lp)) 
(3.5) 

where the dots represent non-linear terms. 
We will use Klimushev's theorem [1]. The degenerate system of the linear approximation obtained 

by putting o = 0% that is, 1/o = 0, is equivalent to system (3.5) with Klw replaced by Ksy. The truncated 
linear approximation system has the form w = -K3w and is obviously uniformly asymptotically stable. 

We will show that the degenerate system is uniformly asymptotically stable. Once again, we apply 
Klimushev's theorem [1], assuming that the parameter 1/~ is small. The corresponding degenerate system 
of the linear approximation has the following form when ~/= oo 

= y, 0 =-A-l(qp(t))Ko x- A-t(qp(t))xKsy 

and is equivalent to the asymptotically stable equation 

/~ = -×-I K~l K0x 

To prove that the truncated system 

j, = _xA -1 (qp (t))KsY 

is uniformly asymptotically stable, we consider the Lyapunov function 

(3.6) 

V = y*A(q~(t))y/2 
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whose derivative along trajectories of system (3.6) is 

= -xy  Ksy + y A(qp (t))y / 2 

Under  our assumptions,~,i(/lp(t)) is a bounded matrix-valued function of time. For all sufficiently large 
r, the function Vwill be negative definite, and the functions V and f" will satisfy estimates characteristic 
for quadratic forms [2], implying that the truncated system is indeed uniformly asymptotically stable. 
This completes the proof. 

The theorem may also be proved using a theorem due to Hoppensteadt [3] rather than Klimushev's 
theorem. 

We will now consider a regulator that does not require the evaluation of Mp(t) and so does not entail 
knowing the exact form of the equations of dynamics 

M = - Y(Kox + Klw) (3.7) 

Theorem 3...2 For any e-tube. . (e > 0) of the programmed path (qp(t),/lp(t)), the motion of system (1.1), 
(3.2), (3.7) will occur within that tube for all t /> 0 and all sufficiently large 3' > 0, provided that the 
initial mismatch Ix(0) I + l y(0) I + I w(0) I is sufficiently small. If the initial mismatch is not small, then 
for any to > 0 there exist o*, 3'* > 0 such that, for all 3' > 3'*, o > t~*, the motion will occur within the 
e-tube for all t >I to. 

The proof is carried out using singular perturbation theory [4, 5], first with the small parameter 1/u 
and then with the small parameter 1/3'. 

Remarks. 1. The result remains true if the left-hand side of Eq. (1.1) includes bounded interference. 
2. If 1/T and l/t) are decreased, the distance between the solutions of the degenerate and the initial systems 

decreases (linearly) at the same rate. It follows that the control M is bounded as ~ and v increase (provided that 
the initial mismatch is small enough). 

Although the proofs of the theorems in [1, 3] are based on the application of Lyapunov functions, 
it is quite difficult to derive from those proofs an estimate of the order of magnitude of the parameter, 
i.e. of the gain. 

At large mismatches, the required control becomes too large and is physically impracticable. If the 
mismatch becomes very large at some time tx, it is recommended that a new programmed path qpn(t) 
should be constructed. . for which, qpn(tx) = q(tx), ilpn(tx) = ii(tx) and which, beginning at a certain time 
ty (ty > tx), must coincide with the old path. 

If the parameters of the system are known, it is preferable to use a regulator based on solving the 
inverse problem of dynamics. When one is using the control scheme (3.2), (3.7), the rotation of the 
motors may switch direction frequently in the neighbourhood of the programmed motion. 

4. S T A B I L I Z A T I O N  OF THE P R O G R A M M E D  P O S I T I O N  OF 
A P L A N E  E L A S T I C  M A N I P U L A T O R  

The dynamics of a plane manipulator with elastic hinges when there is no gravity force, may be 
described by the following equations [6, 7] 

( ~ K l ~ i t l ) - ~ K l ~ q t  + k ( q t - q 2 ) = 0 ,  J i i 2 - k ( q l - q 2 ) = M  (4.1) 

where ql ~ Rn is the vector of angular coordinates of the links, q2 ~ Rn is the vector of angular coordinates 
of the motor rotors, K =/l~A(ql)/11/2 is the kinetic energy of the links, A(ql) is the positive definite 
inertia matrix of the links, J is the diagonal inertia matrix of the motor rotors (with positive diagonal 
elements), k is the diagonal stiffness matrix of the hinges (with positive diagonal elements) and 
M ~ Rn is the vector of control torques applied to the rotor. 

Let qlp = q2p.= const be. the desired position. The equality qlp = q2p corresponds to the unstressed 
state of the manipulator hinges. 

Consider the regulator 

M = -Ko(q 2 - q2p)-  K2(q2 - q2) (4.2) 

and the auxiliary equation 
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q2 = K3(q2 - q2)  (4 .3 )  

which may be solved during the control process. The last equation is equivalent to 

V~'2 ---- -K3w2 + Cl 2 (w2 : q2 -112 ) 

where K i are diagonal matrices with positive diagonal elements. 

(4.4) 

Theorem 4.1. The closed-loop system (4.1), (4.2), (4.3) (ql - qlp,/h, q 2  - q2p, CI2, q 2  - q 2 )  is asymp- 
totically stable on the whole. 

Proof. Using the momentum vector Pl = A(ql)/ll, we write the equations of dynamics as follows: 

¢11 = ~ H ( p l ' q l )  lil ~ H ( p I ' q l ) - k ( q l  - q 2 ) ,  
~Pt ' = - ¢3ql 

~lTz =J-l(M+k(qt - q 2 ) )  (4.5) 

where H(pl ,  ql) is the kinetic energy of the links in terms of the variables Pl and qt. 
We consider a Lyapunov function of the "kinetic energy plus quadratic form" type 

V(Pl ,ql ,/12) = H(Pl, q, ) + [/1"~ J/12 + (qt - q2)*k(ql - q2) + 

+(q2 - q2p)* K0 (q2 - q2p) + w~K2w 2 ] / 2 

and find its derivative along trajectories of system (4.5). Substituting M and w2 into this function from 
Eqs (4.2) and (4.4), we obtain 

=-w;K2K3w2 
Let us investigate the set S = {ql, Oh, q2, q2, q2: ~" -- 0}. It follows from the condition WE = 0 

and from Eq. (4.3) that q2 = q2c  ---- const. The second equation of (4.1) implies that -k(ql  - qEc) = 
-K0(q2c - qEp). Hence it follows that ql = qlc = const. It then follows from the first equation of (4.1) 
that qlc = qEc. Considering the second equation of (4.1) and (4.2) once more, we have q2c = qEp, while 
the equality .q lc  = q2c yields., qlc = qEp..Thus, . . . . . . .  the set S consists of the single point ( q l ,  0, q,., 0, q,.). By 
the Barbashm-Krasovskn theorem, thin equlhbrmm posmon is asymptotically s tab~ on t~e whole. 

5. A S Y M P T O T I C  S T A B I L I Z A T I O N  OF R O T A T I O N  OF A R I G I D  B O D Y  
W I T H  A F I X E D  P O I N T  

Equations of dynamics. Suppose a rigid body has a fixed point O which coincides with its centre of 
mass. Denote  the principal central axes of inertia of the body by Oxyz. Suppose the mutually perpen- 
dicular unit vectors s = (Sx, Sy, Sz) t, S2, S3 are stationary in the inertial system of coordinates, their 
components vary with time, while the mutually perpendicular unit vectors rl, rE and r 3 are fixed relative 
to the rigid body and their components are fixed in time. The components of the vectors written from 
now on are their projections onto the principal axes of inertia of the rigid body. 

The Euler equations for the dynamics of the rotating body may be written in the form 

O t b + t o x O t o = M  (to=(p,q,r) t, O=diag{A,B,C}) (5.1) 

where to is the angular velocity vector of the rigid body andA, B, C > 0 are its principal central moments 
of  inertia. 

The kinematics of the body are described by Poisson's equations 

= s x to  (5 .2 )  

~i = s,. X to, i = 2, 3 (5.3) 

Stabilization of a pair of unit vectors attached to the body. It is required to find a control law under 
which the ordered pair of vectors s2 and s3 will tend to the ordered pair r2 and r3 and the angular velocity 
co will tend to zero. 

To solve this problem, the following control torques have been proposed in particular [8, 9] 
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M = ~ + kr x s + k2r2 x s2 + k3r3 x s3 

where kl, k2 and k3 are pairwise different positive numbers. 
Below we will propose an analogous control torque using measurement of the components of only 

the pair of vectors 52 and s3. 
Consider the control vector 

M = -Fto  + k2r 2 × s 2 + k3r 3 × s 3 (5.4) 

where F = diag {m 15, 7}, a, 15, V > 0; k2, k3 > O, k2 * k3. 

Theorem 5.1. The closed-loop system (5.1), (5.3), (5.4) has an asymptotically stable equilibrium position 
s2 = r2, s3 = r3, to = 0 and unstable equilibrium positions s2 = -r2, s3 = -r3, to = 0; s2 = -r2, s3 = r3, 
to = O; s2 = r2, s3 = -r3 ,  to = O. 

Proof. Consider the Lyapunov function 

V = toOO~/2  + k2(s 2 - 1"2) 2 + k3(s 3 - 1"3) 2 ( 5 . 5 )  

whose derivative along trajectories of system (5.1), (5.3), (5.4) is 

f' = -toFto (5.6) 

Let us investigate the set (s2, s3, to: 1~'= 0). Taking the equations of dynamics and the control law 
into consideration, we obtain 

0 = k2r2 x s2 + k3r3 X S 3 (5.7) 

Lemma. Let s 2 and s3 be two mutually perpendicular unit vectors, let r 2 and r 3 be another pair of 
mutually perpendicular unit vectors, and let k2 and k3 be different positive numbers. Then it follows 
from (5.7) that each vector s2 and s3 is coUinear with the corresponding vector r E and r3. 

Proof. Suppose the contrary. It follows from (5.7) that the vectors $2, s3, r2, 1"3 are coplanar. There are two 
possible situations: the pair r2 and r3 has the same orientation as s2 and s3 in the plane, or the two pairs have 
opposite orientations. In the first case, the non-zero angle between r2 and s2 is equal to the angle between r3 
and s3 and, since k2 and k 3 are positive, equality (5.7) is impossible. But if the pairs have opposite orientations, 
the angle between rE and s2 is the complement with respect to 180 ° of the angle between r 3 and s3, the vectors 
k2r2 x s2 and k3r 3 x s3 have opposite directions, and equality (5.7) is impossible because the numbers k2 and k 3 are 
different. 

Applying Barbashin's theorem [10, p. 25] and the lemma, we deduce that the equilibrium position 
s2 = rE, s3 = r3, to = 0 is asymptotically stable. 

We will now prove that the equilibrium position s2 = -r2, s3 = -r3, to = 0 is unstable. Consider a 
Lyapunov function differing from (5.5) in that the coefficients k2 and k3 have different signs. Its derivative 
along trajectories of system (5.1), (5.3), (5.4) is identical with (5.6). By Krasovskii's instability theorem 
[2], this equilibrium position is unstable. 

The instability of the remaining equilibrium positions is proved in a similar fashion. 

Stabilization of  a pair of  unit vectors attached to the body without measurement of  its velocity vector. We 
consider a control vector similar to (5.4) 

M = Z~(si x E w  i +kir i x s l )  (5.8) 

w h e r e  F i are diagonal matrices of gains with positive diagonal elements, ki > 0 are also gains, 
wi = si - si and si is an estimate of si (i = 2, 3). 

We also consider the differential vector equations of observation 

$~. = Ai ($  i - - S i ) ,  i = 2, 3 (5.9) 

where Ai are diagonal matrices with positive diagonal elements. It is obvious that Eq. (3.2) are equivalent 
to the equations. 

~v~ = - A i w i  + ~i (5 .10)  
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Theorem 5.2. The closed-loop system (5.1), (5.3), (5.8), (5.9) has an asymptotically stable equilibrium 
position 

s2=r2,  s3=r3,  ~ = 0 ,  w2=0, w 3 = 0  (5.11) 

and unstable equilibrium positions 

S2 = - r 2 ,  S3 = - r 3 ,  t o=O,  w 2 = 0 ,  w 3 = 0  

s 2 = - r  2, s 3 = r  3, to=O,  w 2 = 0 ,  w 3 = 0  

s 2 = r  2, s 3 = - r  3, t o=O,  w 2 = 0 ,  w 3 = 0  

Proof. Consider the Lyapunov function 

V = toOto/2"l'Y"3[ki(si - r / )  2 +wiI ' iw i ] /2  

(5.12) 

(5.13) 

(5.14) 

(5.15) 

whose derivative along trajectories of system (5.1), (5.3), (5.4), (5.9) is 

r ----Z wiriz iwi (5.16) 

Let us analyse the set {s2, s3, to, WE, w3: ~'= 0}. It follows from Eq. (5.2) and the condition w2 = w3 = 0 
that si = ¢i (i = 2, 3), where ¢i are certain constant unit vectors. Using Eqs (5.3), we obtain tollc2 and 
tolle 3. Since e2 and c3 are orthogonal, it follows that to = 0. Taking the Euler equations and the control 
law (5.8) into consideration, we obtain (5.7). Application of the lemma and Barbashin's theorem yields 
the asymptotic stability of the equilibrium position (5.11). 

We will now prove that the equilibrium position (5.12) is unstable. To that end, we consider a function 
differing from (5.15) in having a minus sign before the sum and a plus sign before ri. Its derivative along 
trajectories of system (5.1), (5.3), (5.8), (5.9) is identical with (5.11). Applying Krasovskii's instability 
theorem, we infer that the equilibrium position (5.12) is unstable. 

The instability of the remaining equilibrium positions is proved in similar fashion. 

Stabilization o f  the permanent  rotation o f  a rigid body. A n  important particular motion of an uncontrolled 
rigid body is permanent rotation at a prescribed velocity p = p ,  about the central axis of inertia. 

. . . . . .  / /  

Corresponding to this motion is the following particular solution of Eqs (5.1) and (5.2) 

P = P m  q = r = 0 ,  sx=l ,  s y = s ~ = 0  (5.17) 

Consider the following control torques 

M x = - o ¢ ( p - p p ) ,  My = - ~ q - k s  z, M z = -Tr+ksy  (ct, 6, T, k > 0) (5.18) 

Theorem 5.3. The point (5.17) is an equilibrium position of the closed-loop system (5.1), (5.2), (5.18); 
it is asymptotically stable provided that 

~7 > p ~ ( B - C )  2/4 (5.19) 

The system has an unstable equilibrium position obtained from (5.17) by replacing Sx = 1 by Sx = -1.  

Proof. Consider the Lyapunov function 

2 2 V = (A (p  - pp)2 + Bq2 + Cr 2 ) / 2 + k((s x - 1)2 + Sy + s z ) / 2 

Its derivative along trajectories of system (5.1), (5.2), (5.17) is 

(z = . . ~ ( p  _ pp)2 _ [~q2 _ Tr 2 _ pp( B - C)qr 

By Sylvester's criterion, this form is negative definite in the variablesp -pp ,  q, r, provided that (5.19) 
holds. Let us investigate the set {p -pp,  q, r, s: V = 0}. It follows from the conditionp -lap = O, q = 
r = 0 and from Eqs (5.1) and (5.18) that 0 = -ksz, 0 = --kSy. Hence sy = Sz = 0 and so Sx = +1 by the 
normalization condition for the vector s. Applying Barbashin's asymptotic stability theorem, we conclude 
that equilibrium position (5.17) is asymptotically stable. 
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The instability of the other equilibrium position may be verified by analysing the eigenvalues of the 
linear approximation or by using Krasovskii's instability theorem. 

Stabilization by two control torques with a measurement  o f  the velocities. Let us assume that the 
body is controlled by two torques applied along its axes of inertia, that is, Mx = 0 in Eq. (1.1). It 
turns out that the body is then asymptotically stabilizable to permanent  rotation at a certain velocity 
p = c .  

Consider the control torques 

My = - ~ q  - ks,., Mz = - y r +  ksy (I], y, k > 0) (5.20) 

Theorem 5.4. The closed-loop system (5.1), (5.2), (5.20) has an asymptotically stable family of non- 
isolated equilibrium positionsp = c, q = r = 0, Sx = 1, Sy = Sz = 0 and an unstable family of non-isolated 
equilibrium posit ionsp = c, q = r = 0, Sx = -1 ,  sy = Sz = 0 (where c is a parameter).  

Proof. Consider the Lyapunov function 

V = ( A p 2 + B q 2 + C r 2 ) 1 2 + k ( ( s x _ l ) 2  + 2 2 Sy + sz )12 

Calculating its derivative along traje.ctories of system (5.1), (5.2), (5.20), we obtain 1/= -13q 2 - "tr 2. 
We will investigate the set (s, ~o: V= 0}, using Euler's equations and the condition q = r = 0, which 

yield Ap = 0, 0 = -ks z, 0 = ks Consequently, p = c, where c is some constant and s -- Sz = 0 Noting 
. . Y '  y • 

the normahzaUon condition for s, we obtain Sx -- +1. We then apply La Salle's theorem [11]. 
The instability of the family of equilibrium positions defined by Sx = -1 may be established by using 

Krasovskii's instability theorem. 

6. R E M A R K S  

The proof that regulator (2.1) is asymptotically stable on the whole is an extension of the proof that the 
proportional-plus-differential regulator M = -K2(q - ~ )  - K2q + g(q) for natural mechanical systems is asymp- 
totically stable [12]. It has been proved [13] that a proportional-plus-integral-differential regulator guarantees 
asymptotic stability on the whole of a natural mechanical system. The proof that regulator (4.2) is asymptotically 
stable is an extension of the asymptotic stability proof for a proportional-plus-differential regulator in an elastic 
manipulator [14]. 

It has been shown [15] that a natural mechanical system may be asymptotically stabilized on the whole using 
bounded controls (of the type M/= arctg (-koi(qi - qpi) - kli[ti) + gi(q)). 

Various papers [16-19] have proposed non-linear velocity observers, which are complicated to implement. 
The stabilization methods of [20-24], which use non-linear velocity observers and non-linear control laws, require 

a large amount of real-time computations. 
The method proposed above has the advantage that the differential equations of observation are of 

order n, where n is the number of degrees of freedom, and not 2n, as in [20-24]. In addition, the regulator 
and observer are linear and can be implemented in real-time operation, without the use of computers. As the 
observation equations are of order n, our results are comparable with earlier results [25] for single-input linear 
systems. 

The control methods of [20-24] also require a knowledge of the exact form of the object's equations of dynamics, 
in particular, of the system parameters. Control scheme (3.2), (3.7) does not require this, while control scheme 
(2.1), (2.2) requires a knowledge of the potential forces g(q) only. 

The merit of [19, 20] is that they present estimates for the gain and the stability region. 
The control laws proposed here for a rigid body do not require a knowledge of the inertia parametersA, B and 

C. 
Since the control laws are synthesized through the use of Lyapunov functions, the attraction domains are easy 

to investigate. 
Asymptotic stabilization of a rigid body (on the assumption that the kinematics are described by the Euler-Krylov 

angles) was investigated in [26]. 
The problem of the asymptotic stabilization of permanent rotation using only velocities was considered in [27]. 

There is an inaccuracy in Theorem 3.1 of [27]. The system investigated there in fact has the property of local 
asymptotic stability, rather than stability in the large, since the closed-loop system has a second unstable equilibrium 
position (73 = -1 in the notation of [27]). The restrictions considered above on the gains 13 and ~, in Theorem 4.1 
are exactly the conditions of [27]. 

It is well known [28] that permanent rotations of an uncontrollable rigid body about the major and minor 
axes of the inertia ellipsoid are stable with respect to velocities, while rotations about the middle axis are 
unstable. 
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It has been shown [29] that the Euler equations can be asymptotically stabilized in all three velocities by two 

control torques. 
The stabilization of the Euler equations of a rigid body one and two control torques was considered in [30, 

p. 143]. 
The control torques proposed in Section 5 differ from the ones previously investigated [31, 32] in their greater 

simplicity; moreover, the explicitly specified Lyapunov formula makes it possible to investigate the attraction 

domain. 
An angular velocity observer for a rigid body, using only a measurement of the position coordinates, was 

constructed in [33], but the problem of stabilizing the rotation of a rigid body was not considered. 

I wish to t hank  S. V. Gusev  and  A. A.  Pervozanski i  for  useful  discussions of  the  results .  
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